Kolmogorov Complexity and Hausdorff Dimension
نویسندگان
چکیده
منابع مشابه
A Kolmogorov complexity characterization of constructive Hausdorff dimension
Lutz [7] has recently developed a constructive version of Hausdorff dimension, using it to assign to every sequence A ∈ C a constructive dimension dim(A) ∈ [0,1]. Classical Hausdorff dimension [3] is an augmentation of Lebesgue measure, and in the same way constructive dimension augments Martin– Löf randomness. All Martin–Löf random sequences have constructive dimension 1, while in the case of ...
متن کاملConstructive dimension equals Kolmogorov complexity
We derive the coincidence of Lutz’s constructive dimension and Kolmogorov complexity for sets of infinite strings from Levin’s early result on the existence of an optimal left computable cylindrical semi-measure M via simple calculations.
متن کاملHistoric set carries full hausdorff dimension
We prove that the historic set for ratio of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional non-uniformly hyperbolic dynamical systems.
متن کاملExtracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws
We apply results on extracting randomness from independent sources to “extract” Kolmogorov complexity. For any α, > 0, given a string x with K(x) > α|x|, we show how to use a constant number of advice bits to efficiently compute another string y, |y| = Ω(|x|), with K(y) > (1− )|y|. This result holds for both unbounded and space-bounded Kolmogorov complexity. We use the extraction procedure for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Computation
سال: 1993
ISSN: 0890-5401
DOI: 10.1006/inco.1993.1017